Industry News




04/16/2013

Could Energy Efficiency Actually Increase Hospital Infection Rates?

 
Could an energy efficient hospital cause safety risks for patients? A new study says yes.

The chance of infection in some hospital wards varies dramatically according to whether the nurses leave the windows open.

A University of Leeds-led team studied airflow in a "Nightingale" ward—a classic hospital ward design that traditionally accommodates two rows of up to 30 beds—by using tracer gases to simulate how airborne infections spread.

They found ventilation in the ward was generally good when windows were left open, keeping the danger of airborne infection low. But risks increased fourfold when the windows were closed.

Lead investigator Dr Cath Noakes, from the University of Leeds' School of Civil Engineering, said: "These wards are still in operation and, although they have often been subdivided into smaller areas with 6-8 beds, their ventilation and structure is still fundamentally the same.

"We found that when you operate them properly, with natural ventilation from the windows, they perform as the [United Kingdom's] Department of Health would like them to. But we also asked what happens in the winter if the windows are closed?

"There is a big push on energy in buildings and it worries many of us who work on indoor air quality. People are being told to seal up their buildings to save energy. We found, if you do that without alternative ventilation systems, you could be increasing the airborne infection risk significantly," Dr Noakes said.

"Some of these wards were designed by the Victorians, and our results show that they knew what they were doing. But there is a danger that we could be adapting our buildings to improve efficiency without thinking how it might affect patients," Dr Noakes said.

The study, conducted jointly with the Bradford Teaching Hospitals NHS Foundation Trust in a disused ward at St. Luke's Hospital in Bradford, England in summer 2010, used carbon dioxide as a tracer gas to represent potentially infectious exhaled breath.

Carbon dioxide detectors were positioned where beds might be placed in a working ward and the gas was released by popping carbon-dioxide filled balloons.

"By measuring the concentration of the gas over time, we were able to quantify the exposure at each bed and therefore the potential risk to a patient in that bed," said Laura Pickin, one of the members of the research team. "We were also able to use the same data to measure the overall ventilation rate in the ward."

The UK Department of Health recommends that a ward should be ventilated at six air changes per hour, which means replacing the equivalent volume of air in the room six times every hour.

"When the windows were left open in the ward, we recorded ventilation rates that were either satisfactory or better than the UK standard" said Dr Carl Gilkeson, a Research Fellow who worked on the project. "When the windows were closed, the measured exposure to infection was typically four times higher, equivalent to a ventilation rate of only 1.5 air changes an hour".

The researchers found mechanical ventilation systems to be an effective alternative to natural ventilation. The installation of small extractor fans, similar to a domestic bathroom ventilator, beside each bed had a marked positive effect on ventilation, reducing risks to a comparable level to opening the windows.

The study also looked at the effect of partitioning an old "Nightingale" ward to create single bays, a common solution to the problems of privacy posed by traditional designs. Although partitioning slightly increased risks to people in the immediate vicinity of an infected patient, it reduced risks elsewhere in the ward. The findings indicate that it is feasible to partition wards to create a better patient environment without significantly increasing the overall risk of infection.

"These wards still exist and in the current economic environment they are likely to remain for some time. However, we have shown that they can be modified and that their ventilation can be good if they are managed correctly," Dr Noakes said. "Introducing simple mechanical ventilation to supplement the airflow in the winter, could be an effective approach to ensuring good ventilation year-round, without the energy costs of a full air conditioning system".

Co-author Dr Miller Camargo-Valero, Lecturer in Water and Environmental Engineering at the University of Leeds, said: "These simple, low-energy and low-cost solutions could also be of significant benefit for hospitals in the developing world, particularly in countries where airborne diseases such as tuberculosis are a major concern."

 

 


Visit our website today to learn about the design flexibility of a Morton building and the endless possibilities of partnering with our designBUILD team.


Wood construction is both cost and energy efficient. Check out Morton Buildings and our designBUILD team online today to discover all the benefits of post-frame construction.


When choosing a metal-clad building for your next construction project, consider Morton Buildings, Inc., and their designBUILD team, we’ll make your dream a reality.

We Can Help You Reduce Energy by 30%

Our mission is to help our customers manage their buildings' energy costs, improve reliability, and enhance performance while having a positive impact on the environment.
CLICK HERE to find out how.

 


Visit our website today to learn about the design flexibility of a Morton building and the endless possibilities of partnering with our designBUILD team.


Wood construction is both cost and energy efficient. Check out Morton Buildings and our designBUILD team online today to discover all the benefits of post-frame construction.


When choosing a metal-clad building for your next construction project, consider Morton Buildings, Inc., and their designBUILD team, we’ll make your dream a reality.

We Can Help You Reduce Energy by 30%

Our mission is to help our customers manage their buildings' energy costs, improve reliability, and enhance performance while having a positive impact on the environment.
CLICK HERE to find out how.


 
comments powered by Disqus
05/28/2015

Clean energy consumption reaches highest level since 1930s.

05/27/2015

Study shows escalating risk for electrical reliability.

05/26/2015

Funding, climate change blamed for drop in implementation.

05/22/2015

Initiatives will improve lamp efficiency and lighting controls.

05/21/2015

Building policy highlighted as best in the nation.

05/20/2015

Healthcare facilities focus on recycling, safer chemicals.

05/19/2015

Building design has a measureable impact on educational outcomes.

05/18/2015

Glass design repels water and boosts photovoltaic output.

05/15/2015

New method could improve sustainability, cut price of wind power.

05/14/2015

ASHRAE guideline will calculate cooling needs and cut plug loads.

05/13/2015

Legislation will improve green performance in commercial buildings.

05/12/2015

Dropping costs, improved efficiency cited as reasons for increased use.

05/11/2015

New goal to keep state under global warming threshold.

05/08/2015

Largest floor space increases found in healthcare, retail sectors.

05/04/2015

New efficiency measures will affect over 2,000 buildings.

05/01/2015

Device produces images indefinitely.

04/30/2015

Overall energy consumption growth will be modest through 2040.

04/29/2015

Over 400 buildings take part in the EPA’s Federal Green Challenge.

04/28/2015

Fortune 200 companies use green certification to verify sustainability, energy savings.

04/27/2015

New policy will affect over 1,000 buildings.

Sponsored Links