Google’s Green Frontier

10/30/2012 | By Janelle Penny

How the world’s largest search engine gets results for its healthy materials program

Your building may not be as green as you think, no matter how good your intentions. Existing buildings in particular may harbor chemicals and byproducts that can pose real harm to your FM team and the people who live or work in your facility.  Google is at the forefront of the shift to the green frontier and healthy materials programs.

How can you get these potential dangers out of your building and keep them out? Read on to identify and remove existing toxins and prevent future ones.

How Harmful Are These Substances?
Guides to potentially harmful additives and products, such as the one issued by Living Building Challenge (see page 38), typically target the “worst in class” offenders, explains Amanda Sturgeon, vice president of the International Living Future Institute and director of the Living Building Challenge certification program.

Others, like the EPA’s Chemicals of Concern, are flexible and change as more information emerges about the effects of such chemicals. The agency has issued action plans for a handful of the worst offenders and plans to continue adding to the list as ongoing research clarifies the type and severity of reactions caused by each substance.

Google, which opens roughly 40,000 square feet of office space per week, decided in late 2010 to launch its Healthy Materials Program in North America following the success of two pilot projects that summer. This initiative incorporates the Living Building Challenge’s Materials Red List, EPA-issued action plans for its Chemicals of Concern, and two substances now raising concern (nanomaterials and fly ash), says Anthony Ravitz, green team lead in Google’s Real Estate and Workplace Services department.

The company requires all vendors to provide comprehensive information on each product ingredient from every point in the supply chain. They must also share these ingredients not only with Google, but also with the Pharos Project, an online evaluation system that helps registered members make more informed product choices.

Google began conducting international pilot projects this year as part of its plans to expand the requirement to its global facilities.

“What we want are materials that help us build better, healthier places that support people,” Ravitz explains. “Our goal isn’t to do things that are less bad – that’s not the end game here. But we have to start somewhere because we build a lot of buildings. We make decisions every day about what chair to sit people in and what paint to put on their walls if they’re going to spend long hours in our facilities.”

In addition to protecting your own building occupants, avoiding questionable substances also protects you, your team, and ultimately everyone involved in the production of the finished product, Sturgeon notes.

“Commercial buildings have a huge impact. They use a lot of materials and are often doing retrofits, which can disturb the materials and send them to the atmosphere,” Sturgeon says.

How Chemicals of Concern Affect Your Facility
The dangers of VOCs like formaldehyde are well-known and include neurological and respiratory symptoms like headaches, dizziness, and potential asthma aggravation. These effects, while generally not deadly, certainly make it hard for affected occupants to function well at work.

Luckily, prevention is fairly straightforward – it’s not hard to find low-VOC paints and coatings for many applications.

Lesser known and more dangerous are semi-volatile organic compounds (SVOCs), such as bisphenol A (BPA) and wood treatments that contain pentachlorophenol. This class of toxins tends to cause chronic problems like cancer or reproductive toxicity rather than the annoying acute effects imposed by VOCs, Lent says. You can find them in products like caulk and epoxy-based floor coatings for concrete.

“They’re semi-volatile because they don’t off-gas rapidly and they have a very high boiling point, but they’re still getting into people,” explains Tom Lent, research director of the Healthy Building Network, which advocates for safer building materials and created the Pharos Project.

“There are ways other than volatility and off-gassing that ingredients in a building material can end up in the air – it may be from abrasion as you walk across the floor or just general degradation,” Lent adds. “Over time, little bits of dust will flake out and end up wafting in the air or picked up on your fingertips. We end up eating and breathing more of what’s around us than we imagine.”

SVOCs may also endanger your staff, Lent notes, so take the appropriate precautions. FMs are exposed to considerable fumes when applying substances like wet-applied epoxy-based floor coatings.

“I’m most concerned about the big surface areas like floors and walls where you’re spreading out a lot of an epoxy-based material,” Lent says. “With a two-part product, you’re doing a chemical reaction in the building in an uncontrolled way. A lot of our knowledge about BPA comes from studies in the automotive industry on spray-on epoxies, but in a factory, that stuff tends to be more controlled than it is on a jobsite. Think very carefully about worker safety, protective gear, and good ventilation during and after any large application of epoxy-based materials.”

Minimize the Effects of Existing Toxins
Unfortunately, after volatile and semi-volatile compounds are deployed in your facility, there’s not much you can do about it, Lent explains. For example, heating the building to accelerate off-gassing is controversial.

Not only does it speed up off-gassing from the item you wanted to release VOC fumes from, but it can also trigger off-gassing in other products where VOCs would have been safely trapped otherwise.

“There’s definitely value to using high ventilation rates in the days immediately following installation of VOC-laden products, particularly wet-applied VOCs,” Lent explains. “The rate of VOC emissions tends to start high and taper off for all products with emissions, especially paint and other coatings. Most of the green building rating systems now have protocols for ventilation that help speed up that initial burst of off-gassing.

“With solid products like particle board, you’ll get a high initial level of emissions that tapers after a couple weeks but has a very long tail, so you’ve got a problem with long-term emissions,” Lent continues. “There are some coatings for things like particle board, however. It’s tough to get that right.”

It’s exceedingly hard to pinpoint which chemical from which source is causing an occupant’s health complaint, Sturgeon adds. Once a negative reaction is identified, flush the building as best you can to air out the area.

“What tends to happen with VOCs is that they can be released by furniture and then absorbed by carpets. They’re moving around in a space and can be very challenging to remove,” Sturgeon explains. “If the building is naturally ventilated, open all of the windows and don’t run the HVAC system so you get a certain number of air flushes per hour to clear out the space.”

Pages: 1  2  3  View All  

Related Coverage

antalya escort
escort antalya
xxx movies ladyhammer casino
18 film izle
ankara escort
replica watches
istanbul escort
British Shorthair Cat
manavgat eskort